人物專訪 Google AI 深度學習 機器學習 機械神經網路 AlphaGo deeplearning 人工智慧成功挑戰圍棋里程碑的幕後推手, Google DeepMind 資深研究員黃世傑闡述 AlphaGo 的獨特之處 Google 旗下人工智慧公司 DeepMind 前些日子以 AlphaGo 程式以 4:1 的佳績成功挑戰韓國圍棋天才李世石,也為人工智慧史創下全新的里程碑,而幕後推手 DeepMind 公司團隊中的資深研究員以及 AlphaGo 主要程式開發者黃士傑博士也在稍早與台灣媒體見面,簡單的闡述 AlphaGo 與傳統人工智慧不同之處。黃士傑博士出身於台灣,同時也是業餘六段圍棋棋手,早在加入 DeepMind 前就已經於 2010 年以自己開發的圍棋程式 Erica 獲得第十五屆奧林匹亞電腦遊戲程式競賽的金牌。在加入 DeepMind 之後,也將其開發經驗融入這套系統。黃博士提到,有三千年歷史的圍 Chevelle.fu 9 年前
開箱評測 Google intel nvidia gpu cuda gpgpu 深度學習 機器學習 deep learning alpha go 機械神經網路 同樣的招式對聖鬥士是沒有用的!閒聊關於 Google AlphaGo 深度學習平台 今天科技業界發生一件有趣的大事,就是由 Google 的 AlphaGo 人工智慧與韓國棋士李世石的世紀對決,無論今天最終是人類獲勝或是電腦獲勝,都是相當值得玩味的。不同於當年 IBM 深藍超級電腦與俄羅斯國際象棋棋王卡斯帕羅夫的對決, AlphaGo 是以更新穎的機械神經網路架構的深度學習系統所打造的人工智慧,變數也會更多。過去的人工智慧是在系統所預設的邏輯內找尋對應方式,故需要給予超級電腦足以應對各種情況的邏輯庫,它才能夠持續變強,但問題在於過去的人工智慧只是按表操課,宛如早期的遊戲的 AI 一樣會有規律與破綻,也就是會有一定的套路。當然畢竟深藍是那個時代的超級電腦,能夠容納夠多的邏輯庫, Chevelle.fu 9 年前